La eficiencia de la educación superior en México, 2008-2016: Un modelo DEA dinámico-network
DOI:
https://doi.org/10.18504/pl2856-011-2020Palabras clave:
DEA dinámico, network, educación superiorResumen
Esta investigación parte del enfoque sociológico del capital humano para presentar un análisis de la eficiencia de las universidades públicas en México mediante la metodología dea con un modelo dinámico y estructura network. Para identificar las variables usadas en el modelo, se recurre al análisis factorial y al método de componentes principales. Además se lleva a cabo el cálculo de las dimensiones latentes y el gráfico de sedimentación, en donde se tuvo la presencia de dos componentes. Realizada la rotación de factores, se agruparon de manera natural las variables en los nodos de enseñanza y de investigación, mismos que permitieron la agrupación de los inputs y outputs del modelo dea dinámico-network. Los resultados muestran que el nodo más eficiente fue el de la enseñanza.
Descargas
Citas
Abbott, M. & Doucouliagos, C. (2009). Competition and efficiency: Overseas students and technical efficiency in Australian and New Zealand universities. Education Economics, 17(1), 31-57. DOI: https://doi.org/10.1080/09645290701773433
Agasisti, T. & Belfield, C. (2014). Efficiency in the community college sector: Stochastic frontier analysis. (Community Collage Research Center Working Paper, no. 69). Nueva York, N.Y: Columbia University.
Agasisti, T. & Pérez-Esparrells, C. (2010). Comparing efficiency in a cross-country perspective: The case of Italian and Spanish state universities. Higher Education, 59(1), 85-103. DOI: https://doi.org/10.1007/s10734-009-9235-8
Alcaraz-Ochoa, D. & Bernal-Domínguez, D. (2017). Evaluación de la eficiencia técnica de las universidades públicas estatales (UPE) del noroeste de México mediante análisis envolvente de datos (DEA). Nova Scientia, 9(19), 393-410. doi:https://dx.doi.org/10.21640/ns.v9i19.854 DOI: https://doi.org/10.21640/ns.v9i19.854
Angulo, G., Quejada, R. & Yánez, M. (2012). Educación, mercado de trabajo y satisfacción laboral: el problema de las teorías del capital humano y señalización de mercado. Revista de la Educación Superior, 41(163), 51-66. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-27602012000300002&lng=es&tlng=es
Asociación Nacional de Universidades e Instituciones de Educación Superior (ANUIES). (2017). Información Estadística de Educación Superior. Recuperado el 20 de septiembre de 2017, de http://www.anuies.mx/informacion-y-servicios/informacion-estadistica-de-educacion-superior
Aubyn, M., Pina, A., García, F. & Pais, J. (2009). Study on the efficiency and effectiveness of public spending on tertiary education. (Economic Papers, no. 390). Bruselas: Economic and Financial Affairs/European Commission.
Banker, R., Charnes, A. & Cooper, W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092. DOI: https://doi.org/10.1287/mnsc.30.9.1078
Becker, G. S. (1964) Human Capital: A Theoretical and Empirical Analysis, with Special Reference to Education. University of Illinois at Urbana-Champaign’s Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship. Recuperado de https://ssrn.com/abstract=1496221
Becker, G. S. (1962). Investment in human capital: A theoretical analysis. Journal of Political Economy, 70(5), 9-49. DOI: https://doi.org/10.1086/258724
Bogetoft, P., Färe, R., Grosskopf, S., Hayes, K. & Taylor, L. (2009). Dynamic network DEA: An illustration. Journal of the Operations Research Society of Japan, 52(2), 147-162. DOI: https://doi.org/10.15807/jorsj.52.147
Burgos, B. & López, K. (2010). La situación del mercado laboral de profesionistas. Revista de la Educación Superior, 39(4), 19-33.
Coll, V. & Blasco, O. (2006). Evaluación de la eficiencia mediante el análisis envolvente de datos: Introducción a los modelos básicos. Valencia, España: Universidad de Valencia/Eumed.
Cook, W., Liang, L. & Zhu, J. (2010). Measuring performance of two-stage network structures by DEA: A review and future perspective. Omega, 38(6), 423-430. DOI: https://doi.org/10.1016/j.omega.2009.12.001
Cunha, M. & Rocha, V. (2012). On the efficiency of public higher education institutions in Portugal: An exploratory study. (FEP Working Papers, no. 468). Porto, Portugal: Universidade do Porto.
Charnes, A., Cooper, W. & Rhodes, E. (1978). Measurement the efficiency of decision making units. European Journal of Operational Research, (2), 429-444. DOI: https://doi.org/10.1016/0377-2217(78)90138-8
Chuanyi, W., Xiaohong, W. & Shikui, Z. (2016). The relative efficiencies of research universities of science and technology in China: Based on the data envelopment analysis and stochastic frontier analysis. Eurasia Journal of Mathematics, Science & Technology Education, 12(10), 2753-2770. DOI: https://doi.org/10.12973/eurasia.2016.02302a
Despotis, D., Koronakos, G. & Sotiros, D. (2015). A multi-objective programming approach to network DEA with an Application to the assessment of the academic research activity. Procedia Computer Science, (55), 370-379. DOI: https://doi.org/10.1016/j.procs.2015.07.070
Durkheim, E. (1975). Educación y Sociología. Barcelona: Península.
Estudio Comparativo de Universidades Mexicanas (ECUEM). (2017). Explorador del ECUM (ExECUM). Recuperado el 10 de agosto de 2017, de http://www.execum.unam.mx/
Färe, R. & Grosskopf, S. (2000). Network DEA. Socio-Economic Planning Sciences, (34), 35-49. DOI: https://doi.org/10.1016/S0038-0121(99)00012-9
Färe, R. & Grosskopf, S. (1996). Intertemporal production frontiers: With dynamic DEA. Boston: Kluwer Academic Publisher. DOI: https://doi.org/10.1007/978-94-009-1816-0
Farrell, M. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. (Serie A,120, Part III), 253-267. DOI: https://doi.org/10.2307/2343100
Freeman, J. (1975). Political organization in the feminist movement. Acta Sociologica, 18(2-3), 222-244. doi:https://doi.org/10.1177/000169937501800208 DOI: https://doi.org/10.1177/000169937501800208
Gorsuch, R. (1983). Factor analysis. Hillsdale, NJ.: Lawrence Erlbaum Associates.
Gumport, P. (2007). Sociology of higher education: Contributions and their contexts. Baltimore: The John Hopkins University Press. DOI: https://doi.org/10.56021/9780801886140
Hair, J., Anderson, R., Tatham, R. & Black, W. (1999). Análisis multivariante, [Quinta ed.]. Madrid: Prentice Hall Iberia.
Harbison, F. & Myers, Ch. (1964). Education, manpower, and economic growth: Strategies of human resource development. Nueva York: McGraw-Hill.
Johns, G. (2013). Efficiency in English higher education institutions revised: A network approach. Economics Bulletin, 33(4), 2698-2704.
Johnes, J. & Yu, L. (2008). Measuring the performance of Chinese higher education institutions using data envelopment analysis. China Economic Review, 19(4), 679-696. doi:https://10.1016/j.chieco.2008.08.004 DOI: https://doi.org/10.1016/j.chieco.2008.08.004
Kaiser, H. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187-200. DOI: https://doi.org/10.1007/BF02289233
Kao, C. & Hwang, S. (2009). Efficiency measurement for network systems: IT impact on firm performance. Decision Support Systems, 48(3). doi:https://10.1016/j.dss.2009.06.002 DOI: https://doi.org/10.1016/j.dss.2009.06.002
Kim, M., Lee, I. & Oh, S. (2016). Measuring efficiencies of higher education using DEA. International Journal of u- and e- Service, Science and Technology, 9(5), 321-328. DOI: https://doi.org/10.14257/ijunesst.2016.9.5.29
Kim, J. O. & Mueller, C. W. (1978). Introduction to factor analysis: What it is and how to do it. Estados Unidos: Sage. DOI: https://doi.org/10.4135/9781412984652
Kline, P. (1994). An easy guide to factor analysis. Estados Unidos: Routledge.
Lewis, H. & Sexton, T. (2004). Network DEA: Efficiency analysis of organizations with complex internal structure. Computers & Operations Research, 31(9), 1365-1410. DOI: https://doi.org/10.1016/S0305-0548(03)00095-9
Meng, W., Zhang, D., Qi, L. & Liu, W. (2008). Two-level DEA approaches in research evaluation. Omega, (36), 950-957. DOI: https://doi.org/10.1016/j.omega.2007.12.005
Meyer, J. (1972). The effects of the institutionalization of colleges in society. En K. A. Feldman (Ed.), College and student: Selected readings in the social psychology of higher education (pp. 109-126). Nueva York: Pergamon Press. DOI: https://doi.org/10.1016/B978-0-08-016785-5.50016-X
Meza, L., Correia, J. C., Figueiredo, S. & Moreno, P. (2018). Evaluation of post-graduate programs using a network data envelopment analysis model. DYNA, 85(204), 83-90. DOI: https://doi.org/10.15446/dyna.v85n204.60207
Navarro Chávez, J. C. L., Gómez Monge, R. & Torres Hernández, Z. (2016). Las universidades en México: una medida de su eficiencia a través del análisis de la envolvente de datos con bootstrap. Acta Universitaria, 26(6), 60-69. doi:https://dx.doi.org/10.15174/au.2016.911 DOI: https://doi.org/10.15174/au.2016.911
Nemota, J. & Gota, M. (2003). Measuring dynamic efficiency in production: An application of data envelopment analysis to Japanese electric utilities. Journal of Productivity Analysis, (19), 191-210. DOI: https://doi.org/10.1023/A:1022805500570
Nemota, J. & Goto, M. (1999). Dynamic data envelopment analysis: Modeling intertemporal behavior of a birm in the presence of productive inefficiencies. Economic Letters, (64), 51-56. DOI: https://doi.org/10.1016/S0165-1765(99)00070-1
Parteka, A. & Wolszczak-Derlacz, J. (2013). Dynamics of productivity in higher education: Cross-European evidence based on bootstrapped Malmquist indices. Journal of Productivity Analysis, 40(1), 67-82. DOI: https://doi.org/10.1007/s11123-012-0320-0
Pérez-Fuentes, D. & Castillo-Loaiza, J. (2016). Capital humano, teorías y métodos: importancia de la variable salud. Economía, Sociedad y Territorio, 16(52), 651-673. Recuperado el 20 de enero de 2017, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-84212016000300651&lng=es&tlng=es DOI: https://doi.org/10.22136/est0522016675
Pietrzak, M., Pietrzak, P. & Baran, J. (2016). Efficiency assessment of public higher education with the application of data envelopment analysis: The evidence from Poland. Online Journal of Applied Knowledge Management, 4(2). Recuperado el 20 de enero del 2017, de http://www.iiakm.org/ojakm/articles/2016/volume4_2/OJAKM_Volume4_2pp59-73.pdf DOI: https://doi.org/10.36965/OJAKM.2016.4(2)59-73
Psacharopoulos, G. (1973). Returns to investment in education. A global update. (Working Papers, no. WPS1067). Education and Employment. Washington, D.C.: World Bank.
Purohit, B. (2015). Efficiency in education sector: A case of Rajasthan State (India). (Working Paper, no. 121/2015). Chennai, India: Madras School of Economics. Recuperado el 22 de enero de 2017, de http://www.mse.ac.in/wp-content/uploads/2016/09/Working-Paper-121.pdf
Ramzi, S. & Ayadi, M. (2016). Assessment of universities efficiency using data envelopment analysis: Weights restrictions and super-efficiency measure. Journal of Applied Management and Investments, 5(1), 40-58.
Rodríguez, R. (1996). Educación superior y desigualdad social. Un estudio sobre las determinaciones sociales y académicas de las trayectorias escolares en la Universidad Nacional Autónoma de México. Tesis de doctorado en Ciencias Sociales, Centro de Estudios Sociológicos, El Colegio de México, México.
Salazar, A. (2014). The efficiency of education expenditure in Latin America and lessons for Colombia. Revista de Desarrollo y Sociedad, (74), 19-67. doi:https://doi.org/10.13043/dys.74.1 DOI: https://doi.org/10.13043/dys.74.1
Saniee, M. & Safi, M. (2013). Network DEA: An application to analysis of academic performance. Journal of Industrial Engineering International, (9). doi:https://doi.org/10.1186/2251-712X-9-15 DOI: https://doi.org/10.1186/2251-712X-9-15
Schultz, T. (1961). Investment in human capital. The American Economic Review, 51(1), 1-17. Recuperado el 22 de enero de 2017, de http://www.jstor.org/stable/1818907
Selim, S. & Bursalolu, S. (2015). Efficiency of higher education in Turkey: A bootstrapped two-stage DEA approach. International Journal of Statistics and Applications, 5(2), 56-67.
Sengupta, J. K. (1999). A dynamic efficiency model using data envelopment analysis. International Journal of Production Economics, (62), 209-218. DOI: https://doi.org/10.1016/S0925-5273(98)00244-8
Sengupta, J. K. (1997). Persistence of dynamic efficiency in Farrell models. Applied Economics, 29(5), 665-671. DOI: https://doi.org/10.1080/000368497326877
Sengupta, J. K. (1992). Non-parametric approaches to dynamic efficiency: A Non-parametric application of cointegration for production frontiers. Applied Economics, 24(2), 153-159. DOI: https://doi.org/10.1080/00036849200000114
Sexton, T. & Lewis, H. (2003). Two-stage DEA: An application to major league baseball. Journal of Productivity Analysis, (19), 227-249. DOI: https://doi.org/10.1023/A:1022861618317
Stiglitz, J. (1975). The theory of “screening”, education, and the distribution of income. The American Economic Review, 65(3), 283-300. Recuperado el 22 de enero de 2017, de http://www.jstor.org/stable/1804834
Stoica, M. (2016). Efficiency of teaching and research activities in Romanian universities: an Order–Alpha partial frontiers approach. Economic Computation and Economic Cybernetics Studies and Research, 5(4). Recuperado el 25 de enero de 2017, de http://www.ecocyb.ase.ro/nr20164/11%20-%20Stoica%20Madalina,%20final.pdf
Thanassoulis, E. (2001). Introduction to the theory and application of Data Envelopment Analysis: A foundation text with integrated software. Birmingham, Inglaterra: Springer. DOI: https://doi.org/10.1007/978-1-4615-1407-7
Titus & Eagan (2016). Examining production efficiency in higher education: The utility of stochastic frontier analysis. En M. Paulsen (Ed.), Higher education: Handbook of theory and research (Vol. 31, pp. 441-512). Cham: Springer. DOI: https://doi.org/10.1007/978-3-319-26829-3_9
Tone, K. & Tsutsui, M. (2014). Dynamic DEA with Network Structure: A slacks-based measure approach. Omega, 42(1), 124-131. DOI: https://doi.org/10.1016/j.omega.2013.04.002
Tone, K. & Tsutsui, M. (2010). Dynamic DEA: a slacks-based measure approach. Omega, 38(3-4), 45-156. DOI: https://doi.org/10.1016/j.omega.2009.07.003
Tone, K. & Tsutsui, M. (2009). Application of network DEA model to vertically integrated electric utilities. (Discussion Paper, no. 07-03). Recuperado el 25 de enero de 2017, de http://www.grips.ac.jp/r-center/wp-content/uploads/07-03.pdf
Trow, M. (1973). Problems in the Transition from elite to mass higher education. research. Berkeley, California: Carnegie Commission on Higher Education.
Thurstone, L. (1947). Multiple factor analysis. Chicago: University of Chicago Press
Veblen, T. (1965). La teoría de la empresa de negocios. Buenos Aires: Eudeba.
Villalobos, G. & Pedroza, R. (2009). Perspectiva de la teoría del capital humano acerca de la relación entre educación y desarrollo económico. Tiempo de Educar, 10(20), 273-306.
Visbal-Cadavid, D., Mendoza, A. & Quintero, I. (2019). Prediction of efficiency in Colombian higher education institutions with data envelopment analysis and neural networks. Pesquisa Operacional, 39(2). doi:http://dx.doi.org/10.1590/0101-7438.2019.039.02.0261 DOI: https://doi.org/10.1590/0101-7438.2019.039.02.0261
Weber, M. (1946). Essays in sociology. Nueva York, USA: Oxford University Press.
Xiaoxia, S. & Deng, S. (2016). Data envelopment analysis of the efficiency of Australian universities: An empirical study. PACIS 2016 Proceedings. Recuperado el 25 de enero de 2017, de http://aisel.aisnet.org/pacis2016/206/
Zhu, J. (2009). Quantitative models for performance evaluation and benchmarking. Data Envelopment Analysis with spreadsheets, [Seg. ed.]. Boston: Springer. DOI: https://doi.org/10.1007/978-0-387-85982-8
Publicado
Citas a este artículo:
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)